6 Commits
2.0.0 ... main

Author SHA1 Message Date
1884e07378 Make the README a little more concise. 2025-07-06 04:23:27 -05:00
2f761833bd Use message for structures message contents, not msg.
I like `msg`, but `message` is more common and likely to the more
expected name.
2025-07-06 04:12:47 -05:00
c4074007b5 Tweaks to README intro. 2025-07-06 04:12:23 -05:00
05f5c2548c Further edits to README, docs for appender implementations. 2025-07-06 03:25:01 -05:00
9861a93ee4 Add autoconfigured, multithreaded example to README. 2025-07-06 02:29:39 -05:00
4a8365ebef Update README for 2.0.0. 2025-07-06 02:17:25 -05:00
2 changed files with 444 additions and 110 deletions

552
README.md
View File

@ -1,36 +1,139 @@
# Namespaced Logging for Nim # Namespaced Logging for Nim
`namespaced_logging` provides a logging framework similar to [log4j][] or `namespaced_logging` is intended to be a high-performance, thread-safe logging
[logback][] for Nim. It has three main motivating features: framework similar to [std/logging][std-logging] with support for
namespace-scoped logging similar to [log4j][] or [logback][] for Nim. It has
four main motivating features:
- Hierarchical, namespaced logging - Hierarchical, namespaced logging
- Safe and straightforward to use in multi-threaded applications. - Safe and straightforward to use in multi-threaded applications.
- Native support for structured logging (old-style string logging is also - Native support for structured logging.
supported). - Simple, autoconfigured usage pattern reminiscent of the
[std/logging][std-logging] interface.
## Getting Started ## Getting Started
Install the package from nimble: Install the package via nimble:
```bash ```bash
nimble install namespaced_logging # Not yet in official Nim packages. TODO once we've battle-tested it a little
nimble install https://github.com/jdbernard/nim-namespaced-logging
``` ```
Then, in your application, you can use the logging system like so: ## Usage Patterns
### Simple, Autoconfigured Setup
```nim
import namespaced_logging/autoconfigured
# Zero configuration of the LogService required, appender/logger configuration
# is immediately available
addLogAppender(initConsoleLogAppender())
info("Application started")
# Set global threshold
setRootLoggingThreshold(lvlWarn)
# Namespaced loggers, thresholds, and appenders supported
addLogAppender(initFileLogAppender(
filePath = "/var/log/app_db.log",
formatter = formatJsonStructuredLog, # provided in namespaced_logging
namespace = "app/db",
threshold = lvlInfo))
# in DB code
let dbLogger = getLogger("app/db/queryplanner")
dbLogger.debug("Beginning query plan...")
# native support for structured logs (import std/json)
dbLogger.debug(%*{
"method": "parseParams",
"message": "unrecognized param type",
"invalidType": $params[idx].type,
"metadata": %(params.meta)
} )
```
### Manual Configuration
```nim ```nim
import namespaced_logging import namespaced_logging
# On the main thread # Manually creating a LogService. This is an independent logging root fully
let logService = initLogService() # isolated from subsequent LogServices initialized with initLogService
logService.addAppender(initConsoleAppender(LogLevel.INFO)) var ls = initLogService()
# On any thread, including the main thread # Configure logging
let logger = logService.getLogger("app/service/example") ls.addAppender(initConsoleLogAppender())
logger.info("Log from the example service") ls.addAppender(initFileLogAppender("app.log"))
ls.setThreshold("api", lvlWarn)
# Only get logs at the WARN or higher level from the database module # Create loggers
let logger = logService.getLogger("app/database", threshold = some(Level.lvlWarn)) let localLogSvc = threadLocalRef(ls)
logger.error("Database connection failed") let apiLogger = localLogSvc.getLogger("api")
let dbLogger = localLogSvc.getLogger("db")
```
### Autoconfigured Multithreaded Application
```nim
import namespaced_logging/autoconfigured
import mummy, mummy/routers
# Main thread setup
addLogAppender(initConsoleLogAppender())
proc createApiRouter*(apiCtx: ProbatemApiContext): Router =
# This will run on a separate thread, but the thread creation is managed by
# mummy, not us. Log functions still operate correctly and respect the
# configuration setup on the main thread
let logger = getLogger("api")
logger.trace(%*{ "method_entered": "createApiRouter" })
# API route setup...
logger.debug(%*{ "method": "createApiRouter", "routes": numRoutes })
let server = newServer(createApiRouter(), workerThreads = 4)
ctx.server.serve(Port(8080))
info("Serving MyApp v1.0.0 on port 8080")
setThreshold("api", lvlTrace) # will be picked up by loggers on worker threads
```
### Manual Multithreaded Application
```nim
import namespaced_logging
# Main thread setup
var logService = initLogService()
logService.addAppender(initConsoleLogAppender())
var localLogSvc = threadLocalRef(logService) # for use on main thread
# Worker thread function
proc worker(ls: LogService) {.thread.} =
let localLogSvc = threadLocalRef(ls)
let logger = localLogSvc.getLogger("worker")
# Runtime configuration changes
localLogSvc.setThreshold("worker", lvlDebug)
logger.debug("Worker configured")
# Safe thread creation
createThread(workerThread, worker, logService)
```
### Dynamic Configuration
```nim
# Configuration can change at runtime
proc configureLogging(localLogSvc: ThreadLocalLogService, verbose: bool) =
if verbose:
localLogSvc.setRootThreshold(lvlDebug)
localLogSvc.addAppender(initFileLogAppender("debug.log"))
else:
localLogSvc.setRootThreshold(lvlInfo)
# Changes automatically propagate to all threads
``` ```
## Loggers and Appenders ## Loggers and Appenders
@ -43,140 +146,371 @@ threshold, which determines which log events are acted upon by the appender,
and, optionally, a namespace filter, which determines from which loggers the and, optionally, a namespace filter, which determines from which loggers the
appender accepts log events. appender accepts log events.
### Heirarchical Logging and Namespaces ### Heirarchical Logging Namespaces
Loggers are organized hierarchically, with the hierarchy defined by the logger Loggers are organized hierarchically, with the hierarchy defined by the logger
name. A logger with the name `app/service/example` is a child of the logger scope. A logger with the scope `app/service/example` is conceptually a child of
with the name `app/service`. By default, appenders accept log events from all the logger with the scope `app/service`. By default, appenders accept log
loggers, but this can be restricted by setting a namespace filter on the events from all loggers, but this can be restricted by setting a namespace
appender. An appender with a namespace set will accept log events from all filter on the appender. An appender with a namespace set will accept log events
loggers with names that start with the namespace. For example, an appender with from all loggers with scopes that start with the namespace. For example, an
the namespace `app` will accept log events from the loggers `app`, appender with the namespace `app` will accept log events from the loggers
`app/service`, and `app/service/example`, but not from `api/service`. `app`, `app/service`, and `app/service/example`, but not from `api/service`.
The other impact of the logger heirarchy is in the effective logging level of The other impact of the logger heirarchy is in the effective logging level of
the logger. Any logger can have an explicit logging level set, but if it does the logger. An explicit logging level threshold can be set for any scope. Any
not, the effective logging level is inherited from ancestor loggers upwards in scope that does not have an explicit inherits its threshold from ancestor
the logger heirarchy. This pattern is explained in detail in the [logback loggers upwards in the scope naming heirarchy. This pattern is explained in
documentation][effective logging level] and applies in the same manner to detail in the [logback documentation][effective logging level] and applies in
loggers in this library. the same manner to loggers in this library.
### LogMessageFormater
Both the [ConsoleLogAppender](#ConsoleLogAppender) and
[FileLogAppender](#FileLogAppender) can be given a *LogMessageFormatter* to
determine how a log message is formatted before being written.
```nim
type LogMessageFormatter* = proc (msg: LogMessage): string {.gcsafe.}
```
## Available Appenders
### ConsoleLogAppender
Used for writing logs to stdout or stderr.
```nim
proc initConsoleLogAppender*(
formatter = formatSimpleTextLog,
## formatJsonStructuredLog is another useful formatter provided
## or you can write your own
useStderr = false, ## stdout is used by default
namespace = "", ## appender matches all scopes by default
threshold = lvlAll ## and accepts all message levels by default
): ConsoleLogAppender {.gcsafe.}
```
The first time a message is sent to any *ConsoleLogAppender*, we create a
writer thread which writes messages to the specified output in the order they
are received, flushing the file handle after each write to enforce an ordering.
The ConsoleLogAppender implementation uses a channel to send messages to the
writer thread.
### FileLogAppender
Used for writing logs to files.
```nim
proc initFileLogAppender*(
filePath: string,
formatter = formatSimpleTextLog,
## formatJsonStructuredLog is another useful formatter provided
## or you can write your own
namespace = "",
threshold = lvlAll
): FileLogAppender {.gcsafe.}
```
Similar to the *ConsoleLogAppender* implementation, the first time a message is
sent to any *FileLogAppender* we create a writer thread which writes messages
to files associated with the *FileLogAppender* configured for the current
*LogService*.
`namespaced_logging` does not currently have built-in logic for file
rotation, but it does play nice with external file rotation strategies. We do
not hold open file handles. The *FileLogAppender* attempts to batch messages
by destination file, opens the file with mode `fmAppend`, writes the current
batch of log messages, and then closes the file handle. Because of this, it has
no problem if another process moves or truncates any of the target log files.
### CustomLogAppender
Provides an extension point for custom logging implementations.
```nim
func initCustomLogAppender*[T](
state: T, # arbitrary state needed for the appender
doLogMessage: CustomLogAppenderFunc[T],
# custom log appender implementation
namespace = "",
threshold = lvlAll): CustomLogAppender[T] {.gcsafe.} =
```
The `state` field allows you to explicitly pass in any data that is required
for the custom functionality.
*TODO: rethink this. I chose this to avoid GC-safety issues copying closures
across threads, but maybe I don't need this separate, explicit state field.*
> [!WARNING] The `state` data type must support copy semantics on assignment.
> It is possible to pass a `ref` to `state` and/or data structures that include
> `ref`s, but **you must guarantee they remain valid**, either by allocating
> shared memeory, or (preferably) keeping alive a reference to them that the GC
> is aware of, either on the thread where they were initialized or by
> explicitly telling the GC about the cross-thread reference *(TODO: how?)*.
See [testutil][] and the unit tests in [namespaced\_logging][nsl-unit-tests]
for an example.
## Notes on Use in Multi-Threaded Applications ## Notes on Use in Multi-Threaded Applications
The loggers and appenders in this library are thread-safe and behaves more The loggers and appenders in this library are thread-safe and are intended to
intuitively in a multi-threaded environment than `std/logging`, particularly in behave more intuitively in a multi-threaded environment than
environments where the logging setup code may be separated from the [std/logging][std-logging] while presenting a similar API. This is particularly
true in environments where the logging setup code may be separated from the
thread-management code (in an HTTP server, for example). thread-management code (in an HTTP server, for example).
The *LogService* object is the main entry point for the logging system and As described in the [Getting Started](#getting-started) section, you can use
should be initialized on the main thread. The *LogService* contains the "source the `namespaced_logging/autoconfigured` import to use a simplified interface
of truth" for logging configuration and is shared between all threads. that more closely matches the contract of [std/logging][std-logging]. In this
Internally all access to the *LogService* is protected by a mutex. case all thread and state management is done for you. The only limitation is
that you cannot create multiple global *LogService* instances. In practice this
is an uncommon need.
Logging can be very noisy and if the *LogService* needed to be consulted for If you do need or want the flexibility to manage the state yourself, import
every log event, it could easily become a performance bottleneck. To avoid `namespaced_logging` directly. In this case, the thread which initialized
this, the *getLogger* procedure makes a thread-local copy of the logging system *LogService* must also be the longest-living thread that uses that *LogService*
configuration (loggers defined and appenders attached). instance. If the initializing thread terminates or the *LogService* object in
that thread goes out of scope while other threads are still running and using
the *LogService*, the global state may be harvested by the garbage collector,
leading to use-after-free errors when other threads attempt to log (likely
causing segfaults).
**Note** that this means that the thread-local cache of the logging system When managing the state yourself, the *LogService* object is the main entry
configuration can become stale if the logging system configuration is changed point for the logging system and should be initialized on the main thread. The
after the thread-local copy is made (if another appender is added, for *LogService* contains a reference to the "source of truth" for logging
example). This is a trade-off to avoid the performance penalty of consulting configuration and is safe to be shared between all threads.
the *LogService* for every log event.
Individual threads should use the *threadLocalRef* proc to obtain a
*ThreadLocalLogService* reference that can be used to create *Logger* objects.
*ThreadLocalLogService* objects cache the global *LogService* state locally to
avoid expensive locks on the shared state. Instead an atomic configuration
version number is maintained to allow the thread-local state to detect global
configuration changes via an inexpensive [load][atomic-load] call and
automatically synchronize only when necessary.
This thread-local caching mechanism is the primary advantage of this logging This thread-local caching mechanism is the primary advantage of this logging
system over `std/logging` in a multi-threaded environment as it means that system over std/logging in a multi-threaded environment as it means that
the logging system itself is responsible for making sure appenders are the logging system itself is responsible for making sure appenders are
configured for every thread where loggers are used, even if the thread configured for every thread where loggers are used, even if the thread
initialization context is separated from the logging setup code. initialization context is separated from the logging setup code.
If you find yourself needing to change the logging configuration after the
logging system has been initialized, the *reloadThreadState* procedure can be
used to update the thread-local cache of the logging system configuration, but
it must be called on the thread you wish to update.
As a final note, the advice to initialize the *LogService* on the main thread ## Architectural Design
is primarily to simplify the configuration of the logging service and avoid the
need to manually reload caches on individual threads. A *LogService* reference
is required to call *getLogger*, but it can be created on any thread.
## Custom Appender Implementations ### Overview
Due to the thread-safety of the logging system, there are a few additional The namespaced logging library attempts to balance performance, safety, and
considerations when implementing custom appenders. The *LogAppender* abstract usability in multithreaded environments. The design centers on two key types:
class is the base class for all appenders. To implement a custom appender, two *LogService* and *ThreadLocalLogService*.
methods must be implemented:
### `appendLogMessage`
#### LogService (Value Type)
```nim ```nim
method appendLogMessage*(appender: CustomLogAppender, msg: LogMessage): void {.base, gcsafe.} type LogService* = object
configVersion: int
global: GlobalLogService
appenders: seq[LogAppender]
thresholds: TableRef[string, Level]
``` ```
This is the primary appender implementation that takes a LogMessage and The *LogService* object is intended to support uses cases such as:
writes it to the appender's destination. As the signature suggests, the - **Main thread initialization**: a mutable *LogService* supports all of the
implementation must be GC-safe. As a multi-method, the *CustomLogAppender* type configuration functions you would typically need when initializing logging
should be replaced by the actual name of your custom appender. for an application on the main thread.
- **Cross-thread communication**: Being an `object` type, *LogService* follows
value semantics and can be safely copied between threads.
- **Service composition**: independently initialized *LogService* objects are
truly independent and multiple can be created and embedded in larger
application contexts.
Because the *LogAppender* uses multi-methods for dynamic dispatch, the > [!TIP]
custom appender class must also be a `ref` type. > The *LogService* object is the object that is intended to be shared across
> threads.
### `initThreadCopy`
#### ThreadLocalLogService (Reference Type)
```nim ```nim
method initThreadCopy*(app: LogAppender): LogAppender {.base, gcsafe.} type ThreadLocalLogService* = ref LogService
``` ```
This method is used to create a thread-local copy of the appender. It is called *ThreadLocalLogService* is a reference to a thread-local copy of a *LogService*
by the *reloadThreadState* procedure to update the thread-local cache of the and can be obtained via *threadLocalRef*. We purposefully use reference
logging system configuration. The implementation will be passed the appender semantics within the context of a thread so that *Logger* objects created
instance that was provided to the *addAppender* procedure and must return a within the same thread context share the same *ThreadLocalLogService*
thread-local copy of that appender. reference, avoiding the need to synchronize every *Logger* individually.
The `initThreadCopy` implementations for the built-in *ConsoleLogAppender* and *ThreadLocalLogService* is the object that users are expected to interact with
*FileLogAppender* provide simple examples of how to implement this method by during regular operation and support both the configuration functions of
simply copying state into the local thread, but this method can also be used *LogService* and the creation of *Logger* objects.
to perform any other thread-specific initialization that may be required for
the appender implementation.
### Example Custom Appender > [!CAUTION]
> *ThreadLocalLogService* objects should **never** be shared outside the
> context of the thread in which they were initialized.
The following defines a simple custom appender that writes log messages to a #### GlobalLogService (Internal)
database table. It uses the [waterpark][] connection pooling library to manage
database connections as waterpark is also thread-safe and makes implementation
straight-forward.
Under the hood *LogService* holds a reference to a *GlobalLogService*, a
heap-allocated object that serves as the single source of truth for logging
configuration. This internal type is not exposed to library users but manages:
- **Shared configuration state**: Appenders, thresholds, and root logging level
- **Synchronization primitives**: Locks and atomic variables for thread
coordination
- **Background I/O threads**: Dedicated writer threads for console and file
output
- **Configuration versioning**: Atomic version numbers for efficient change
detection
The `GlobalLogService` ensures that configuration changes are safely propagated
across all threads while maintaining high performance for logging operations.
### Thread Safety Model
#### Safe Cross-Thread Pattern
```nim ```nim
import db_connectors/db_postgres # Main thread setup
import namespaced_logging, waterpark, waterpark/db_postgres let logService = initLogService()
logService.addAppender(initConsoleLogAppender())
type DbLogAppender = ref object of LogAppender # Safe: value semantics allow crossing thread boundaries
dbPool: PostgresPool proc workerThread(ls: LogService) {.thread.} =
# Convert to thread-local reference for efficient operations
let tlls = threadLocalRef(ls)
let logger = tlls.getLogger("worker")
logger.info("Worker thread started")
let dbPool: PostgresPool = newPostgresPool(10, "", "", "", connectionString) createThread(worker, workerThread, logService)
method initThreadCopy*(app: LogAppender): LogAppender =
result = DbLogAppender(dbPool: dbPool) # copy semantics as PostgresPool is an object
method appendLogMessage*(appender: DbLogAppender, msg: LogMessage): void {gcsafe.} =
appender.withConnection conn:
conn.insert(
"INSERT INTO log_events " &
" (level, scope, message, error, timestamp, custom_fields) " &
"VALUES " &
" (?, ?, ?, ?, ?, ?)",
msg.level,
msg.scope,
msg.message,
if msg.error.isSome: msg.error.msg
else: "",
msg.timestamp,
msg.additionalData)
``` ```
#### Unsafe Pattern (Avoided by Design)
```nim
# DON'T DO THIS - unsafe reference sharing
# ThreadLocalLogService should not be shared across threads
let tlls = threadLocalRef(initLogService())
createThread(worker, someProc, tlls) # ❌ Potential GC issues
```
### Configuration Synchronization
#### Atomic Version Checking
The library uses atomic version numbers to efficiently detect configuration
changes:
```nim
proc ensureFreshness*(ls: var LogService) =
# Cheap atomic check first
if ls.configVersion == ls.global.configVersion.load():
return # No changes, return immediately
# Only acquire lock and copy if versions differ
withLock ls.global.lock:
ls.configVersion = ls.global.configVersion.load
# Sync state...
```
Goals/Motivation:
- Most logging operations skip expensive synchronization so the hot path is
fast.
- Propogate changes automatically so all threads see configuration updates.
- Minimize lock contention by only acquiring when configuration changes
#### Thread-Local Caching
Each thread maintains its own copy of the logging configuration in
*ThreadLocalLogService*:
- **Appenders**: Thread-local copies created via `clone()` method
- **Thresholds**: Complete copy of namespace-to-level mappings
- **Version tracking**: Local version number for change detection
This caching strategy provides:
- **High performance**: No locks needed for normal logging operations
- **Consistency**: All threads eventually see the same configuration
- **Isolation**: Thread-local state prevents cross-thread interference
## Error Handling
### Overview
For errors that occur during logging operations, there is a callback-based
error handling system designed to attempt to gracefully handle such failures.
Since logging is typically a non-critical operation we prioritize application
stability over guaranteed log delivery.
### Error Handler
The library uses a callback-based error handling pattern where applications can
register custom error handlers to be notified when logging operations fail. The
error handler receives:
- `error`: The exception that caused the failure
- `msg`: A descriptive message providing context about where the error occurred
```nim
type ErrorHandlerFunc* = proc(error: ref Exception, msg: string) {.gcsafe, nimcall.}
```
### Default Error Handler
namespaced\_logging uses the `defaultErrorHandlerFunc` if a custom error
handler has not been configured. The default handler:
1. Attempts to write to stderr, assuming it is likely to be available and monitored
2. Writes an error message and includes both the exception message and stack
trace (not available in release mode).
3. Fails silently if it is unable to write to to stderr.
### Configuration
#### Setting Custom Error Handlers
```nim
# During initialization
var logService = initLogService(errorHandler = myCustomErrorHandler)
# Or at runtime on either the LogService...
logService.setErrorHandler(myCustomErrorHandler)
# ... or on a ThreadLocalLogService
var localLogSvc = threadLocalRef(logService)
localLogSvc.setErrorHandler(myCustomErrorHandler)
```
#### Disabling Error Reporting
```nim
proc silentErrorHandler(err: ref Exception, msg: string) {.gcsafe, nimcall.} =
discard # Do nothing
logService.setErrorHandler(silentErrorHandler)
```
### Best Practices
#### Provide Fallbacks
```nim
proc robustErrorHandler(err: ref Exception, msg: string) {.gcsafe, nimcall.} =
# Primary: Send to monitoring system
if not sendToMonitoring(err, msg):
# Secondary: Write to dedicated error log
if not writeToErrorLog(err, msg):
# Tertiary: Use stderr as last resort
try:
stderr.writeLine("LOGGING ERROR [" & msg & "]: " & err.msg)
stderr.flushFile()
except: discard
```
#### Keep Error Handlers Simple
As much as possible, avoid complex operations that might themselves fail.
Don't do heavy operations like database writes, complex network operations, or
file system operations that might fail and cause cascading errors.
[log4j]: https://logging.apache.org/log4j/2.x/ [log4j]: https://logging.apache.org/log4j/2.x/
[logback]: https://logback.qos.ch/ [logback]: https://logback.qos.ch/
[effective logging level]: https://logback.qos.ch/manual/architecture.html#effectiveLevel [effective logging level]: https://logback.qos.ch/manual/architecture.html#effectiveLevel
[atomic-load]: https://nim-lang.org/docs/atomics.html#load%2CAtomic%5BT%5D%2CMemoryOrder
[std-logging]: https://nim-lang.org/docs/logging.html
[testutil]: /blob/main/src/namespaced_logging/testutil.nim
[nsl-unit-tests]: https://github.com/jdbernard/nim-namespaced-logging/blob/main/src/namespaced_logging.nim#L904

View File

@ -440,7 +440,7 @@ proc log*(l: Logger, lvl: Level, msg: JsonNode) {.gcsafe.} =
error: none[ref Exception](), error: none[ref Exception](),
timestamp: now(), timestamp: now(),
message: message:
if msg.hasKey("msg"): msg["msg"].getStr if msg.hasKey("message"): msg["message"].getStr
else: "", else: "",
additionalData: msg)) additionalData: msg))