Remove autoconfigured (didn't work as implemented).

This commit is contained in:
2025-07-11 17:38:04 -05:00
parent 1b598fb445
commit 3178c50936
5 changed files with 160 additions and 594 deletions

128
README.md
View File

@ -8,7 +8,7 @@ four main motivating features:
- Safe and straightforward to use in multi-threaded applications.
- Native support for structured logging.
- Simple, autoconfigured usage pattern reminiscent of the
[std/logging][std-logging] interface.
[std/logging][std-logging] interface (*not yet implemented*)
## Getting Started
@ -21,38 +21,6 @@ nimble install https://github.com/jdbernard/nim-namespaced-logging
## Usage Patterns
### Simple, Autoconfigured Setup
```nim
import namespaced_logging/autoconfigured
# Zero configuration of the LogService required, appender/logger configuration
# is immediately available
addLogAppender(initConsoleLogAppender())
info("Application started")
# Set global threshold
setRootLoggingThreshold(lvlWarn)
# Namespaced loggers, thresholds, and appenders supported
addLogAppender(initFileLogAppender(
filePath = "/var/log/app_db.log",
formatter = formatJsonStructuredLog, # provided in namespaced_logging
namespace = "app/db",
threshold = lvlInfo))
# in DB code
let dbLogger = getLogger("app/db/queryplanner")
dbLogger.debug("Beginning query plan...")
# native support for structured logs (import std/json)
dbLogger.debug(%*{
"method": "parseParams",
"message": "unrecognized param type",
"invalidType": $params[idx].type,
"metadata": %(params.meta)
} )
```
### Manual Configuration
```nim
import namespaced_logging
@ -72,34 +40,6 @@ let apiLogger = localLogSvc.getLogger("api")
let dbLogger = localLogSvc.getLogger("db")
```
### Autoconfigured Multithreaded Application
```nim
import namespaced_logging/autoconfigured
import mummy, mummy/routers
# Main thread setup
addLogAppender(initConsoleLogAppender())
proc createApiRouter*(apiCtx: ProbatemApiContext): Router =
# This will run on a separate thread, but the thread creation is managed by
# mummy, not us. Log functions still operate correctly and respect the
# configuration setup on the main thread
let logger = getLogger("api")
logger.trace(%*{ "method_entered": "createApiRouter" })
# API route setup...
logger.debug(%*{ "method": "createApiRouter", "routes": numRoutes })
let server = newServer(createApiRouter(), workerThreads = 4)
ctx.server.serve(Port(8080))
info("Serving MyApp v1.0.0 on port 8080")
setThreshold("api", lvlTrace) # will be picked up by loggers on worker threads
```
### Manual Multithreaded Application
```nim
import namespaced_logging
@ -136,43 +76,6 @@ proc configureLogging(localLogSvc: ThreadLocalLogService, verbose: bool) =
# Changes automatically propagate to all threads
```
### Autoconfigured Logging in Library Code, Falling Back to `std/logging`
One of the primary uses-cases for the autoconfigured option is for use in
libraries or other packaged code where the main application may not be using
or even aware of namespaced\_logging, especially when paired with the
[*StdLoggingAppender*][#StandingLoggingAppender], which can be configured to
fallback to std/logging when no appenders have been configured for
namespaced\_logging.
```nim
import namespaced_logging/autoconfigured
# Add a StdLoggingAppender to forward logs to std/logging
addLogAppender(initStdLoggingAppender(fallbackOnly = true))
# will be forwarded to std/logging.debug
debug("log from library code")
addLogAppender(initConsoleLogAppender())
# will no longer be forwarded to std/logging.debug
debug("log from library code")
```
### Providing A Custom Configuration to Replace Autoconfigured Service
```nim
import namespace_logging
var ls = initLogService()
ls.addAppender(initConsoleLogAppender())
useForAutoconfiguredLogging(ls)
# from this point on any autoconfigured LogService or Loggers will use the
# configuration defined by ls
```
## Loggers and Appenders
The logging system is composed of two main components: loggers and appenders.
@ -320,26 +223,17 @@ behave more intuitively in a multi-threaded environment than
true in environments where the logging setup code may be separated from the
thread-management code (in an HTTP server, for example).
As described in the [Getting Started](#getting-started) section, you can use
the `namespaced_logging/autoconfigured` import to use a simplified interface
that more closely matches the contract of [std/logging][std-logging]. In this
case all thread and state management is done for you. The only limitation is
that you cannot create multiple global *LogService* instances. In practice this
is an uncommon need.
The *LogService* object is the main entry point for the logging system and
should be initialized on the main thread. The *LogService* contains a reference
to the "source of truth" for logging configuration and is safe to be shared
between all threads.
If you do need or want the flexibility to manage the state yourself, import
`namespaced_logging` directly. In this case, the thread which initialized
*LogService* must also be the longest-living thread that uses that *LogService*
instance. If the initializing thread terminates or the *LogService* object in
that thread goes out of scope while other threads are still running and using
the *LogService*, the global state may be harvested by the garbage collector,
leading to use-after-free errors when other threads attempt to log (likely
causing segfaults).
When managing the state yourself, the *LogService* object is the main entry
point for the logging system and should be initialized on the main thread. The
*LogService* contains a reference to the "source of truth" for logging
configuration and is safe to be shared between all threads.
The thread which initializes a *LogService* must also be the longest-living
thread that uses that *LogService* instance. If the initializing thread
terminates or the *LogService* object in that thread goes out of scope while
other threads are still running and using the *LogService*, the global state
may be harvested by the garbage collector, leading to use-after-free errors
when other threads attempt to log (likely causing segfaults).
Individual threads should use the *threadLocalRef* proc to obtain a
*ThreadLocalLogService* reference that can be used to create *Logger* objects.